蓝狮平台_蓝狮注册登录云技术中心

神经网络的泛化能力差吗?

image.png


通过学习找到隐含在数据背后的规律,蓝狮怎么当代理?并对具有同一规律的学习集以外的数据,这种经过训练的网络可以给出合适的输出,该能力就被称为泛化能力

对于神经网络而言,一般越复杂说明该神经网络承受的复杂度越高,描述规律的复杂度容量就越大,当然越好,当然也不是绝对的,但是这能说明一个容器容量的问题,这时该神经网络泛化能力也越强。

我们需要知道结构复杂性和样本复杂性、样本质量、初始权值、学习时间等因素,都会影响神经网络泛化能力。为了保证神经网络具有较强的泛化能力,人们已做了很多研究,得到了诸多泛化方法,常用的包括剪枝算法、构造算法和进化算法等。

人工神经网络泛化能力主要是由于透过无监督预学习可以从训练集导出高效的特征集。蓝狮登录注册数据存储好吗?复杂的问题一旦转换成用这些特征表达的形式后就自然变简单了。观念上这个有点像是在做适用于训练集的一种智能化的坐标转换。

举例来说,如果训练集是许多人脸的图片,那么预训练做得好的话就能导出如鼻子,眼睛,嘴巴,各种基本脸型等特征。如果做分类时是用这些特征去做而不是基于像素的话,结果自然会好得多。虽然大型的神经网络具有极多的参数,可是由于做分类时其实是基于少数的特征,因此也比较不会产生过拟合的情形。

同时,针对神经网络易于陷入局部极值、结构难以确定和泛化能力较差的缺点,引入了能很好解决小样本、非线性和高维数问题的支持向量回归机来进行油气田开发指标的预测。